
OFFICE OF NAVAL RESEARCH

Contract N00014-87-K-0494

R&T Code 400X027YIP

Technical Report No. 10

Nonlocal Free Energy Density Functional Approximations for the Electrical Double Layer;
Comparison with Monte Carlo Results for 2:1 Salts

by

L. Miery-y-Teran, Zixiang Tang, H.S. White, and H.T. Davis

Prepared for Publication in the

Journal of Chemical Physics

University of Minnesota
Department of Chemical Engineering and Materials Science

Minneapolis, MN 55455

April 10, 1990

Reproduction in whole or in part is permitted for any purpose of the United States
Government.

This document has been approved for public release and sale; its distribution is unlimited.

DTIC
'ELECTE
APR19.199011

~B



REPORT DOCUMENTATION PAGE
a. REPORT SEC.RT7Y C .AS3.FiC 7CN :o RESTRCT;vE m,.ARK.NC3

Unclassified
'a. EC'.RiTY QC- AS3F,3CA ;CN ALj7-CRITY 3 LiSTRIBtj7.CN, AvA,LA iLi7TY OF R.FORT

.n. LC_ASS,,tC,- 7lON, ZOWNGRALIN.G SC.AEDUL-
Unclassified/Unlimited

4. -ERFCRMlNG CRGNiZAT'CN R-ERT . 4NLABR(S) S. ,mCNITCRiNG CRGANIZATICN REPORT NMBER(S;

ONR Technical Report 10
ia. 'AME CP ZRCFCR-iN A RG,'4;ZA7:ON 6O. O;:IC: SYMBOL 7a. NIAME OF .MCNTCRING CRGNIlZAiT;CN

Dept of Chemical Engineering (If apolicaoie)
and Materials Science Code 1113 Office of Naval Research

- c. ,ODRE-s 'C~ty, 5ate, ' i P Z pC,;e) 7b. AOCRESS IC , Stcae. arc Z:P Coie)

University of Minnesota 800 North Quincy Street
Minneapolis, MN 55455 Arlington, VA 22217

3a. NAME OF :UJNOING, SPONSORING 8b. OF;;CE. SYMBOL 3. PROC REMENT NSTRUMENT . ENTFtCAT7ON N. ,MaER
CRGANI.ZATICN (if appiicabIe)
Office of Naval Research Contract No. N00014-87-K-0494

3c. AOORESS( C,'t," State. ana ZIP Coc.) '0 SOURCE Or :LNOING lUMBERS
8 RIOGRAM PROJECT TASK WORK 'JNIT

800 North Quincy Street :EMENT NO. NO. NO. ACC'SSiCN NO
Arlington, VA 22217-5000

;. .ITL- lIncuce S cunrty C.'assificatlon)
Nonlocal Free Energy Density Functional Approximations for the Electrical Double Layer,
Comparison with Monte Carlo Results for 2:1 Salts

12. PERSCNAL AuTtOR(S)
L. Miery-y-Teran, Zixiang Tang, H.S. White and H.T. Davis

!a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT Year,M ntDay) jIS. PAGE COUNT

Technical I RCM TO

:6. SUPPLE.MENTARY NOTAT:CN

prepared for publication in the Journal of Chemical Physics
7 CCSATI CZDES !8. SUBjECT TERMS Continue on reverse if necessary anfd iaen tfy oy WIOCK Purncer)

:-. I CL I SUB-CROUP'

. ABSTRACT XContrnue on reverle of necessary an oenrity oy oOicx numoer)
This paper reports dqnsity profiles and mean electrostatic potentials of a restricted
primitive model doubre layer. Results for an asymmetric 2:1 salt, predicted by three
different nonlocal free energy density functional approximations, are compared with
Monte Carlo results and with those of Gouy-Chapman theory. Results for the diffuse
layer potential are also compared with those of some recent theories of the double layer.
The hard-sphere contribution to the free-energy functional is based on a nonlocal generic
model functional proposed by Percus. We choose the Carnahan-Starling equation of state
to calculate the free energy of the homogeneous hard-sphere mixture which enters in the
hard-sphere functional. The mean spherical approximation for a neutral bulk electrolyte
is used to model the electrostatic part of the non-uniform ion-ion correlations present
in the interface. For singly charged counterions the agreement between the density
functional approximations applied here and the Monte Carlo data is excellent. For doubly
charged counterions the agreement is very good at high concentrations, but differs from
(continued)

:O DISTR;BL, TONG /AvALAL,7Y OF ABSTRACT ?I *' STRACT S .',PITY CLASS;CAfTCN
: ;CCSS.F.,JNL:MT=. : SAME AS :R" C DC ,.Is I Unclassified

a OAMB ,F -1EPCNSL- N, -,GUA._:' 4ON" jrt uae Area C.oci 21. Z,; C; 3rM9CL

Henry S. White 1(612) 625-6q5
0 FORM 1473, 34 ,AAR 33 APR eait,on ay ze ,se ririi exnaustec SE' R v CLASSFCA-:O C "S 2'9E

All OVI'er ecit:io$ ar o0osoet.



TECHNICAL REPORT #10

(Abstract Continued)

the MC results in several aspects at low concentrations. The density functional theories
are successful in predicting the extremum of the diffuse-layer potential as a function
of surface charge present in the simulations.

Accession For
NTIS VCrGA&I

DTIc TB (]
U -: -),i ,.,j 'r .e d El
Ju ;L 11,f iclt i Cn

By ._______

D ist riht

Avaibli,' Cl&'.s

'\ ." DistjI Sipeocia



NONLOCAL FREE ENERGY DENSITY FUNCTIONAL APPROXIMATIONS
FOR THE ELECTRICAL DOUBLE LAYER; COMPARISON WITH

MONTE CARLO RESULTS FOR 2:1 SALTS.

L. Mier-y-Teran* Zixiang Tang, H. S. White, and H. T. Davis.

Department of Chemical Engineering and Materials Science,
University of Minncskta, Minneapolis, MN 55455

ABSTRACT

This paper reports density profiles and mean electrostatic potentials of a restricted
primitive model double layer. Results for an asymmetric 2:1 salt, predicted by three differ-
ent nonlocal free energy density functional approximations, are compared with Monte Carlo
results and with those of Gouy-Chapman theory. Results for the diffuse layer potential
are also compared with those of some recent theories of the double layer. The hard-sphere
contribution to the free-energy functional is based on a nonlocal generic model functional
proposed by Percus. We choose the Carnahan-Starling equation of state to calculate the
free energy of the homogeneous hard-sphere mixture which enters in the hard-sphere func-
tional. The mean spherical approximation for a neutral bulk electrolyte is used to model
the electrostatic part of the non-uniform ion-ion correlations present in the interface. For
singly charged counterions the agreement between the density functional approximations
applied here and the Monte Carlo data is excellent. For doubly charged counterions the
agreement is very good at high concentrations, but differs from the MC results in several
aspects at low concentrations. The density functional theories are succesfull in predicting
the extremum of the diffuse-layer potential as a function of surface charge present in the
simulations.

* On sabbatical leave from Deparamento de Fisica, Universidad Autonoma Metropolitana-

Iz.apalapa, Apartado Postal 55-534, 09340 Mexico, D. F., Mexico.
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I. INTRODUCTION

Recently, a nohlocal density functional theory for the electrical double layer was
presented [1]. A double layer is the separation of charge which occurs in an electrolyte
in the presence of an electrode. In these studies the restricted primitive model of an
electrolyte (RPM) was used. In this very simplified model, the ions are modeled as charged
hard spheres of equal diameter d and the solvent is represented as a uniform medium with
dielectric constant .

In Ref.(1), the general formalism due to Mermin [2] is used to construct a grand
potential functional for the interface. The hard-sphere contribution to the free energy
functional is based on a nonlocal generic model functional proposed by Percus [3]. It was
shown by Vanderlick et al. [4], that this generic functional can be used as a generating
functional of several known nonlocal approaches. In particular, the generalized van der
Walls (GVDW) model [5], the generalized hard-rod model (GHRM) [6,7] and the smoothed-
density approximation (SDA) due to Tarazona [8] can be generated with this functional.
This generic functional was extended to mixtures by Vanderlick et al. [9].

Using the GHRM, the density functional theory was applied in Ref.(1) to a planar
interface for symmetric 1:1 and 2:2 RPM electrolytes. More recently [10], the same the-
ory, combined with the GVDW model and the SDA was also applied to symmetrical 1:1
and 2:2 salts. In all cases, use was made of the analytic solution of the mean spherical
approximation MSA [il] for the bulk electrolyte to approximate the electrostatic part of
the nonuniform Ornstein-Zernike direct correlation function wich appears in the theory.
In both works [1,10], the free energy of the hard-sphere system, which appears in the
functional, was approximated with the Carnahan-Starling expression [12]. In Ref.(10), the
Clausius equation of state was also used.

The results of Refs.(1,10) can be summarized as follows: the comparison of the
density functional theory with the computer simulations of Torrie and Valleau [13,14] for
symmetric electrolytes shows that, when combined with the Carnahan-Starling equation
of state, the theory is very succesful in predicting density profiles and mean electrostatic
potential functions for the RPM electrolyte. The theory correctly predicts the layering
effects present in the computer simulations of 1:1 electrolytes at I M and high electrode
charges [13], and the charge reversal phenomena which occurs in 2:2 electrolytes [14]. The
three models studied are in very close agreement at low concentrations and low surface
charge densities but the differences between them increases when charge or concentration
are increased. The comparison with the MC data [13] for the diffuse layer potential as a
function of the surface charge density [101 shows that the GHRM is superior to the other
two models at high surface density charges for highly concentrated 1:1 electrolytes. This is
probably due to a fortuitous cancelation of errors in the GHRM since the SDA, which is a
better model for the non-uniform hard-sphere system [41, gives a better representation of
the layering effects present at high density charges. The three models compared are only
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in qualitative agreement with the MC data for the diffuse layer potential as a function of
surface charge density for 2:2 salts [101.

In this article we report results of the density functional theory for 2:1 electrolytes for
both positively and negatively charged electrodes. As in Ref.(10), we present a comparison
between the GHRM, the GVDW model and the SDA. We also compare our results with
those of the Gouy-Chapman [15,161 theory as modified by Stern [17] (MGC), and with those
of some recent theories of the double layer. These include the most refined version of the
modified Poisson-Boltzmann (MPB5) theory [181, the hypernetted chain/mean spherical
approximation (HNC/MSA) theory [191 and the Born-Green-Yvon (YBG) with the closure
introduced by Caccarno et al. [20].

As pointed out previously by several authors [14,19], results for 2:1 salts are inter-
esting not only because their practical applications, but also because the MGC theory
exhibit both qualitative agreement or disagreement, compared with the MC results, de-
pending upon whether the counterion is monovalent or divalent.

This article is as follows. In Sec. II we briefly review the theory. We report our
results in Sec. III and we conclude in Sec. IV with a disscusion.

II. THEORY

In Refs.(1) and (10) the formalism due to Mermin [21 was adopted to construct a
model grand potential functional, 12({n}), for a mixture of charged particles in an external
potential va(r). This functional of the density profiles can be written in the following form:

2(fi({n}) =,31({n'}) +/8 E I d3r n,,(r)v(r)

+ d Jdr nc,(r) 1n (nc,(r)/no) d- r [n,,(r) - n]tr""('' .i-,- ,,'A

+ d 3rd d3 r' [n,(r) - n'] [n#(r) - n'] /dA] dA'cc,,6(r, r'; A'),

(2.1)
where /3=1/kT, T is the absolute temperature and k is Boltzmann's constant. In this
equation f2({ni}) is the grand free energy of a reference or initial state at the same tem-
perature T, chemical potentials, p,, and volume V than the interface. The reference state
was chosen to be absent of any external potential. It is a state of uniform density in which

n,'(r) = n,, = constant. (2.2)

In the obtention of Eq.(2.1), a linear path was chosen for the functional integration. The

path is characterized by a single parameter A which varies from 0 to the unity. The function
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c0.(r, r'; A) represents the Ornstein-Zernike direct correlation function of a nonuniform
mixture at a particular point on the integration path.

The equilibriuin density profiles, n,(r), minimize the grand potential functional,
Q({n}), for fixed v,,(r) and intermolecular potentials u , (r, r'). For a restricted primitive

model electrolyte the pair potential can be separated into its Coulombic and short-range
repulsive contributions

u,(r, r') = zz,6e 2t(!r - r'I) + ur(Ir - r'I), (2.3)

where zQ is the valence of species a, e is the magnitude of the electronic charge,

u(r) = 1/r, (2.4)

and
ur(r)= 0, r < d, (2.5)

=0, r > d.

It is also convenient to separate the Coulombic and short range contributions to the ex-
ternal potentials. The impenetrable wall produces a repulsive potential of the form,

vi(x) = oo, x < d/2, (2.6)

= 0, x > d/2,

where x is the shortest distance to the wall. The surface charge density, a, gives rise to a
one body Coulombic potential of the following form

v(x) = -27rallj/e + C, (2.7)

where C is a constant which determines the point of zero potential. By functional difer-

entiation of the grand potential functional w.r.t. n(r), we obtain the following expression
for the equilibrium density profiles:

ln(n. (r)/n.) = -0 (v'(r) + ezab(r))

+ d 3r' [no(r') - n,6 ] dAAc ,6(r, r'; A) (2.8)

6AFHS({n})

6n 0(r)

In the last equation, O(r) is the mean electrostatic potential, Ac 0 0(r, r') is the resid-
ual part of the direct correlation function defined by

c0r(r, r') - z,,ze 2uc(Ir - r'I) + c, (r, r') + Ac.O(r, r'), (2.9)
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and ca. (r, r') is the hard sphere contribution to the function c,6(r, r'). The last term on
the right hand side of Eq.(2.8) is the functional derivative of the excess free energy change
between the reference state and and the final state due to the hard sphere interaction [1].
The mean electrostatic potential is a solution of Poisson's equation. In the case of a planar
interface, Poisson's equation can be integrated to give

W(x) = 4 j dx' (x - x') zn,(z'), (2.10)

where the condition of overall electroneutrality,

odx' Zzan,(X) -a, (2.11)

was imposed.

In order to obtain an expression for the hard-sphere excess free energy functional
AFHS({n}), we make use of the generic functional proposed by Percus [3] as the three
dimensional generalization of the Helmholtz free energy of an inhomogeneous hard rod
system. This functional can be written for mixtures [9] as

Feces({n}) = f(r)Fo ({ff(r)}) (2.12)

where tz(r) and Tiz(r) are coarse grain densities which are defined as spatial averages of
the local densities over certain small domains. For a mixture, the coarse grain densities
are defined as

,(r) = J d3r' va(r - r'; {n})na(r'), (2.13)

fir,(r) J d3r' r,(r - r'; {n})na(r'). (2.14)

The weigthting functions vc,(r - r'; {n}) and rc(r - r'; {n}), which in the most general
case are functionals of the density distributions must be normalized, i.e.,

J d3r'vza(r - r'; {n}) = J d3r' ra(r - r'; {n}) = 1. (2.15)

By changing the specific form of weighting functions in Eqs.(2.13) and (2.14) different
model density functionals can be generated [4]. In this work we solved Eq.(2.8) for the
three model functionals mentioned before; the GVDW, the GHRM, and the SDA due
to Tarazona. Here we briefly summarize the specific forms of the weigthting functions
va(r - r'; {n}) and r0 (r - r'; {n}) for these three models. For the GVDW model, we have

v.,(r - r'; {n}) = 6(r - r'), (2.16)
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ra(r - r'; {n}) = H(d - Ir - r'I)/(47rd 3/3), (2.17)

where 6(r) the Dirac delta function and H(r) is the Heaviside step function defined by

H(r) =1, r > 0, (2.18)
=0, r<0.

For the GHRM [6,7],

v.(r - r'; {n}) = 6(d/2 - Ir - r'I)/(47r(d/2)2 ), (2.19)

Tr(r - r'; {n}) = H(d/2 - jr - r'I)/(47r(d/2)3 /3), (2.20)

whereas for the SDA [8], we have

v,(r- r'; {n}) = 6(r - r'), (2.21)
C1 (I)( r r'j)fi'(r)

ra(r - r'; {n}) = w 0)(Ir - r') + c') 6-

(2) (2.22)
w Ir - r'j)fi(r)F.r(r).

6-y

In the case of a restricted primitive model electrolyte, all the ions have the same diameter.
As a result of this simplification, the w's become to be independent on the species, and we
can rewrite Eq.(2.22) as

r(r- r'; {n}) - w(°)(r - r'j) + w(1)(Ir - r'I) 3 n}(r)

+ w(2)(r - r'l)(Z ft(r))2 , (.3)

Thus, in the SDA, the density dependent weighting functions r(r-r'; {n}) are expressed as
a truncated series in the nonlocal densities fir(r). The coefficients w(0 )(Jr-r'j), w()(Ir-r'[)

and w( 2)(fr - elj) are density independent weighting functions which satisfy the following
properties: J d3r w('(Irl) = 60, i- 01,2. (2.24)

With r(r - r'; {n}) defined in this way, and using Eq.(2.14), fi'(r) can now be expressed
as

f(r) - gi()(r) + ni0)(r) ii(r) + ?)(r)(Z-- (r))2, (2.25)

where
i0)(r) = d3r'w()(Ir - r'I)n,(r'), i = 0,1,2. (2.26)
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In the SDA the coefficients w are determined by requiring the direct correlation function
cHS(Ir - r'I) of a uniform hard-sphere fluid obtained from the second order functional
derivative of the excess free-energy functional, F""", be close to that of the Percus-
Yevick approximation for the hard-sphere uniform fluid to the second order in density [8].
The prescription for the density independent weighting functions is

'j, r< d,(27a

w 0, r > d, (2.27a)

w('(r) = 0.475 - 0.648 (r)+ 0.113 ,<d

= 0.288 - 0.924 + 0.764 - 0.187 2, d <r < 2d, (2.27b)

rdI r > 2d,

=0,

W (2)(r) =id 16 -12 @ 2] r < d,
r>d.

0 ,

In the SDA, the total coarse-grained density, n' f, required in our computations is given
by the following root of the quadratic equation, Eq.(2.25),

1 - - [(- (')(r)) 4(E ()(r)) (E. n(, (r))] 1•x--'zil(2)())

(2.2S)

According to Eq.(2.8), our description of the electrical interface is not complete with-
out the kwoledge of the inhomogeneous residual correlation function AcO(r, r';A.\) and the
excess free energy per particle F0 of a homogeneous hard-sphere fluid. We approximate
the function Ac,,O(r, r'; A) with the function Ac0 g(jr - r'j) of a neutral bulk electrolyte
and use the MSA expression for this function given by [11]

[2(r) = _ 2) 2( )2 r- 1, r < d,

C d d rr > d, (2.29)

-,

where B= + 1 1+ tLi,

and K PDd. The quantity XD is the inverse Debye screening length given by

-"= (41r3e/ n. (2.30)
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In this work we use the quasiexact Carnahan-Starling formula for the excess free energy
per particle of a homogeneous hard-sphere fluid [12]. For the RPM electrolyte we can use
the expression

77r(4 - 3Y})3
/#Fo(n) = _ )rnd/6, (2.31)

(1 - eta )2 ' T~7rn3

for the one component hard-sphere fluid.

III. RESULTS

In this work we have carried out calculations for 2:1 electrolytes at bulk concentrations
of 0.005, 0.05 and 0.5 M. For the two latter concentrations we considered both positive and
negative surface charge densities a. For concentration of 0.005 M the MC data reported
[14] are for negative values of a only. Since we are interested in a comparison of our
results with the data obtained via computer simulation, we restricted our calculations at
bulk concentration of 0.005 M to negative values of a. For positive surface charge, the
counterions are singly charged ions , while for negative surface charge the counterions are
doubly charged.

In order to solve Eq.(2.6) we employed the finite-element numerical techniques de-
scribed elsewhere [21]. As in Refs.(1) and (10), we used quadratic Lagrange interpolating
polynomials as basis functions for solving Eq.(2.6) for the GHRM and linear or "chapeau"
functions for solving the same equation for the GVDW model and the SDA. We generated
solutions in the domain d/2 < x < R, where x is the distance to the wall and R is the
cutoff distance used as the upper limit in the integrals. A uniform mesh of N points was
used in all the cases. Both N and R are strongly dependent on the concentration of the
bulk electrolyte.

A Newton iterative scheme was used to solve the set of non-linear algebraic equations
for the values of the reduced density profiles at the positions of the nodes: gai = n,(x,)/n,.
The iterative process is continued until the Euclidean norm of the updates after the itera-
tion k+i becomes less than 10-10, i.e.,

1(~) _(k) 21*

8 < I0 - ° .  (3.1)
2N

As a second internal test of our calculations we also have cheked the agreemcnt of the
electroneutrality condition, Eq.(2.11). This equation was satisfied to at least five significant
figures in all our calculations.

We found convenient to use dimensionless parameters. The dimensionless surface
charge density is a* = ad/e. The dimensionless mean electrostatic potential is /'(x) =
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f3ei,(x). The distance x is reduced by the diameter d. As in our previous work, in order to
compare with the MC data of Valleau and co-workers [141, we fixed the plasma parameter
to F" = /3e2 / ed = 1.6809. This value of F* corresponds to T=298 K, e = 78.5 and d=
4.25A.

Our results for the diffuse layer potential at several values of the surface charge, o*,
for 2:1 electrolytes are summarized in Table I. For comparison, in the same table we also
display the MC results of Torrie and Valleau [14], the results of the MGC theory [15-17],
the BGY theory of Caccamo et al. [20], those corresponding to the MPB5 theory [18],
and HNC/MSA results due to Lozada-Cassou and Henderson [19]. For positive values
of o*, the agreement between the results of the density functional theories presented in
this article and the MC data is excellent. The GHRM theory is slightly superior to the
other two density functional theories for positive a* . For negative surface charges, the
agreement between our results and the MC data is only fair at low concentrations but
considerable improves at the higher concentration of 0.5 M. The GVDW theory and the
SDA are slightly better than the GHRM for the negative values of a* investigated in this
work.

A comparison of the results of the three density functional theories with the MGC
theory and MC data is presented in Fig. 1. This figure shows the dimensionless diffuse
layer potential, 0*(0) = 8e0(0) as a function of the electrode charge density a* for c =
0.005, 0.05 and 0.5 M. The MGC theory, which neglects the effects due to the finite size of
the ions, overestimates the thickness of the double layer and predicts a monotonic rise for
the diffuse layer potential as a function of a*. As has been pointed out by other authors
[14], for positive surface charge, the behavior of the diffuse layer potential as a function
of a* is very reminiscent of that of 1:1 electrolytes. For negative surface charges, the
monotonic behavior of the MGC theory is in significant disagreement with the MC data,
since the simulation results present a minimum in the diffuse layer potential as a function
of a*. The density functional theories predict the presence of that minimun. Since the
results of the GVDW theory are undistinguishable from those of the SDA with the scales
used in all our plots, in what follows we only show one line for these two approximations.
For c = 0.005 M, the results of the three density functional theories are undistinguishable
on the plot.

We proceed now to examine the information contained in the ionic density profiles and
mean electrostatic potential profiles. For positive surface densities and low concentrations,
the behavior of the double layer is very similar bo that found in 1:1 systems. Thus we
describe the behavior at higher concentrations where more interesting phenomenae are
present. In Fig. 2 we display the density profiles at 0.5 M and a* =0.20. The solid lines
correspond to the GHRM theory, while the dot-dashed lines correspond to the GVDW
theory and SDA. The circles correspond to the MC data of Torrie and Valleau [14]. The
dashed lines are the MGC density profiles calculated with the analytic solution for 2:1
RPM electrolytes found by Grahame [22]. As shown in Fig. 2, the three density functional
theories predict a counterion profile with a very shallow minimum around x = 2.5d. To
this minimum, corresponds a maximum in the coion density profile. Note that the position
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of the plate has been shifted to x = -d/2 in all our plots. The MC results seem to present
the same oscillatory behavior, but it is partially hiden by the statistical noise. As usual,
the classical MGC theory predicts monotonic density profiles. The oscillatory behavior is
also apparent in the'mean electrostatic potential as a function of the distance to the wall.
In Fig. 3 we can see how the MC data for the function O(x) have a change in sign around
x = 1.5d and present a shallow minimun. The three density functional theories studied
predict quite well the location and size of this minimum in O(x).

We now shift our attention towards systems with negative surface charges. This
situation corresponds to a system with doubly charged counterions and singly charged
coions. For systems with low surface density, the behavior of the density profiles and
potential profile is monotonic. This is the case for c = 0.005 M and a*= -0.05, see Fig.
4, where the results of the three density functional theories for the function Vk(x) are
coincident up to the scale presented. Even when the results obtained with the density
functional theories are in considerable improvement over the MGC theory, appreciably
overestimate the interfacial thickness.

At higher concentration and higher surface charges the MC profiles are no longer
monoton;c. In Fig. 5 we present MC density profiles at c = 0.05 M and a* = -0.20.
The coion density profile obtained in the MC simulation [14] has a peak around x = 1.5d.
In the same figure we display the profiles obtained with the density functional theories
studied in this paper and those of the MGC theory The profiles predicted by the density
functional theories are still monotonic but show a clear tendency towards an oscillatory
behavior. As before, the differences between the GVDW and the SDA are negligible.
Differences between the GHRM theory and the other two density functional theories are
also very small in this case. The three theories produce coion density profiles which are
undistinguishable in the figure. At the larger surface charge of a ° = -0.284 and the same
concentration c = 0.05 M, the MC data show a very small charge inversion in between
x = 2.5d and 4.5d; see Fig. 6. The profiles predicted by the density functional theories are
still monotonic and the differences between them continue to be very small. Of course.
the MGC theory profiles are monotonic. The charge inversion phenomenae present in the
MC data at these conditions, produces an oscillatory behavior in the mean electrostatic
potential profile; see Fig. 7.

The oscillatory behavior in the MC data is more evident at higher concentrations.
In Fig. 8 we present a comparison of the MC density profiles with those obtained with
the density functional theories studied here at c = 0.5 M and a* = -0.1704. The charge
reversal phenomenae is very pronounced at these conditions. For comparison, in the same
figure we display the results of the MGC theory. The agreement between the density
functional theories and the simulation results is good here. Again, the differences between
the three density functional theories are very small. The charge reversal found at c = 0.5 M
and a* = -0.1704 produces a relatively deep minimum in the mean electrostatic potential
profile. In Fig. 9 we compare the results of the density functional theories for the function
O(x) with the MC results. The agreement between the theories theories studied here and
the simulation results is good, but the theories clearly underestimate the deepness of the
minimum.
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IV. SUMMARY

In this article we applied three different nonlocal free energy density functional ap-
proximations to the problem of a double layer consisting of a 2:1 RPM electrolyte solution
in the presence of a planar electrode. Previously, we applied these theories to a double
layer in equilibrium with symmetrical 1:1 and 2:2 salts [1,10]. These nonlocal density
functional approximations are based on the generic functional proposed by Percus [3] and
generalized to mixtures by Vandelick et al. [9]. This functional attempts to account for
the nonlocal effects due to the finite size of fluid particles by incorporating coarse-grain
densities. The approximations studied here provide three different models of weighting
functions for the specification of the coarse-grain densities. Following Refs.(1) and (10),
we use the Carnahan-Starling [12] equation of state to approximate the free energy of a
homogeneous hard-sphere mixture. This latter quantity is required as an imput by the
functional. The residual electrostatic part of the inhomogeneous direct correlation func-
tions are approximated with those of the neutral bulk electrolyte which is in equilibrium
with the interface. We use the analytical solution of the MSA for bulk electrolytes [11] for
the latter.

The density functional approximations compared in this article, are quantitatively
correct in their predictions of density profiles and mean electrostatic potential functions
of 2:1 electrolytes when the counterions are singly charged. The values of the diffuse layer
potential obtained with these theories for positive o,, are in excellent agreement with the
MC data within the intervals of composition and surface charge explored. The GHRM is
slightly better than the other theories studied in this work for singly charged counterions.
This result is reminiscent of that found for 1:1 electrolytes [10]. At very high charges,
one would expect the appearence of the layering phenomenon observed in 1:1 salts. The
differences between the theories compared and the simulat-o , results, grow very slowly
when a is increased.

The theories compared in this article correctly predict the qualitative asymmetry with
respect to the sign of the surface charge found in the MC data of the diffuse layer potential.
However, only at high concentration the theories give a satisfactory quantitative prediction
of this property when the counterions are doubly charged. At low concentrations and
small negative surface charges, the theories correctly predict the monotonic behavior of the
density and mean electrostatic potential profiles, but fail to predict the oscillatory behavior
present in the MC results when the surface charge is increased. At high concentration the
density and mean electrostatic potential profiles obtained in this work show the charge
reversal effect in agreement with the MC simulations.

For singly charged counterions, the theories studied here compete in accuracy with the
results obtained by Plischke and Henderson [23] by solving the inhomogeneous Ornstein-
Zernike (OZ) equation for the pair correlation function together with the Lovett-Mou-Buff-
Wertheim equation and the hypernetted chain closure. For doubly charged counterions.
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the OZ/LMBW theory shows to be superior by predicting the oscillatory behavior present
in the density profiles and mean electrostatic potential at low concentrations and high
surface charges.

j

The GVDW model is the zero order approximation of the SDA. Thus, the very small
differences found between the predictions of these two theories within the intervals of
composition and a studied, for both positive and negative values of a, show that the zero
order term in the weighting functions of the SDA is extremely dominant over the other
two terms in this regime.
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'TABLE I. Diffuse layer potential for 2:1 electrolytes.

MC MGC BGY MPB5 HNC/MSA GHRM GvdW SDA

0.005 N

-0.01 -0.91(0.02) -0.959 ---- -0.947 -0.947 -0.947
-0.02 -1.37(0.01) -1.518 - -1.485 -1.484 -1.484
-0.05 -1.87(0.03) -2.381 - - -- -2.233 -2.228 -2.228

0.05 N

-0.05 -1.05(0.01) -1.315 -1.11 -1.05 -1.158 -1.160 -1.156 -1.156
-0.0975 -1.21(0.06) -1.916 -1.476 -1.21 -1.511 -1.522 -1.505 -1.505
-0.126 -1.26(0.03) -2.161 -1.597 -1.27 -1.577 -1.596 -1.568 -1.569
-0.20 -1.18(0.03) -2.612 -1.739 -1.27 -1.497 -1.551 -1.481 -1.485
-0.284 -1.02(0.03) -2.959 -1.74 -1.27 -1.176 -1.288 -1.353 -1.164
0.04294 1.73(0.02) 1.740 1.705 1.70 1.89 1.675 1.672 1.672
0.18 3.99(0.05) 4.324 4.04 -. 3.89 4.005 3.922 3.922

0.5 N

-0.05 -0.40(0.02) -0.547 -0.372 -0.373 -0.311 -0.317 -0.311 -0.312
-0.099 -0.50(0.01) -0.951 -0.509 -0.463 -0.462 -0.476 -0.462 -0.463
-0.1704 -0.46(0.01l) -1.379 -0.574 -0.460 -0.482 -0.518 -0.480 -0.484
-0.24 -0.35(0.03) -1.683 -0.557 -0.411 -0.351 -0.425 -0.351 -0.360
0.0989 1.04(0.02) 1.308 0.97 0.986 0.966 0.988 0.965 0.967
0.20 1.94(0.03) 2.364 1.875 1.85 1.806 1.914 1.814 1.831

a) G. M. Torrie and J. P. Valleau, Ref.(14). Statistical
uncertainty is shown in parentheses.

b) C. Caccamo, G. Pizzimenti, and L. Blum, Ref.(20).
c) C. W. Outhwaite and L. B. Bhuiyan, Ref.(18).
d) M. Lozada-Cassou and D. Henderson. Published in Ref.(20).



FIGURE CAPTIONS

Fig. 1 Reduced diffuse layer potential, /3eVk(O), as a function of the charge density, ad/e,
for 2:1 electrolytes. Solid lines represent the results of the GHRM, dot dashed lines
the results of GVDW and SDA. The results displayed are for 0.005, 0.05 and 0.5
M. Solid squares, open circles, and solid circles are the corresponding MC results.
Dashed lines are the results of the MGC theory.

Fig. 2 Reduced density profiles n(x)/n for a 2:1 electrolyte at c = 0.5 M and a* = 0.2. The
dots are the MC results. The dashed lines correspond to the MGC theory, the solid
lines to the GHRM, and the dot dashed lines to the GVDW and SDA. Note that the
wall is at x = -d/2.

Fig. 3 Reduced mean electrostatic potential profile at c = 0.5 M and a* = 0.2 Symbols as
in Fig.2.

Fig. 4 Reduced mean electrostatic potential profile for a 2:1 RPM electrolyte at c = 0.005 M
and a* = -0.05. The dots are the MC results of Ref.(13), The dashed line correspond
to the MGC theory, and the solid line to the density functional approximations used
in this work. At the low concentration and surface charge corresponding to this figure,
the results of the three density functional approximations are undistinguishable on
the plot.

Fig. 5 Reduced density profiles, n(x)/n, for a 2:1 electrolyte at c = 0.05 M and a* = -0.2.
The dots are the MC results. The solid lines correspond to the GHRM, and the dot
dashed lines to the GVDW and SDA. Dashed lines are the results of the MGC theory.

Fig. 6 Reduced density profiles, n(x)/n, for a 2:1 electrolyte at c = 0.05 M and a* = -0.284.
All symbols as in Fig. 5.

Fig. 7 Reduced mean electrostatic potential profile for a 2:1 electrolyte at c = 0.05 M and
a* = -0.284. All symbols as in Fig. 5.

Fig. 8 Reduced density profiles, n(x)/n, for a 2:1 electrolyte at c = 0.5 M and a* = -0.1704.
The dots are the MC results. The solid lines correspond to the GHRM, and the dot
dashed lines to the GVDW and SDA. Dashed lines are the results of the MGC theory.
The density functional theories predict the charge reversal phenomenon.

Fig. 9 Reduced mean electrostatic potential profile for a 2:1 electrolyte at c = 0.5 M and
a* = -0.1704. The dots are the MC results. The solid line correspond to the GHRM,
and the dot dashed line to the GVDW and SDA. The dashed line corresponds to the
MGC theory.
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